
Programming assignment 1. Creating small tools
Write programs that do one thing and do it well.

Peter H. Salus, A Quarter-Century of Unix (1994)

The main goal of this assignment is to familiarize yourselves with Markus submission system and svn,

and to set up your programming environment for developing C programs.

So far you were writing small snippets of code on PCRS and learned about existing Linux utilities, but

now you are ready to start writing your own software tools.

Part 1. Your SVN repository
It is important that you follow the instructions carefully, so that your work is correctly recorded.

Remember, you must do all of the steps on a CDF machine from your own account. You can do it from

home if you are logged into a CDF server (using NX, Putty, ssh).

1.1. Checkout your svn repository
Create a directory in your home directory called csc209. Change into that directory and check out your

SVN repo using the repository link from MarkUs.

1.2. Copy input files
Input files for all tasks are in this tar archive: A1_files.tar. Copy this archive into your A1 directory, and

untar it. You should see the following input files: testinput1.csv, testinput2.csv, testinput3.csv,

starbucks.csv, tims.csv, map.html, campuscoffee.html and 2 image files. Important note: since you do

not know where these files came from (probably from the internet), make sure that you convert text

files to Linux format by running fromdos or dos2unix before using them as an input to your

programs.

1.3. Test svn
Create file readme.txt with a single line: "A1". Add this file to your svn repository using svn add

readme.txt. Then commit it using svn commit -m 'First commit'. Once you have

committed files to your repository, you can use MarkUs to make sure that what you committed is what

we’ve got. The Submissions tab for the assignment will show you what is in the repository, and will let

you know if you named the files correctly. You will not be able to submit files through the MarkUs web

interface for the assignments.

If you need more information about svn, you can find it in this tutorial:

http://maverick.inria.fr/~Xavier.Decoret/resources/svn/

Your TA would be able to do these first steps together with you, until you understand how to submit

your files by adding them to svn and committing your changes. Make this a habit to always test your

code before the end of the work day to make sure that it compiles and runs, and commit your changes

to svn.

Doing all these steps does not give you any marks, but if you do not submit your work into the correct

repository on Markus, you will fail the entire assignment. Having all the correct code compiling and

http://maverick.inria.fr/~Xavier.Decoret/resources/svn/

running on your local machine and even in the incorrect place on teaching server (cdf) will reduce all

your hard work to the mark of zero.

Part 2. My first tool: csv2js
You need to design and implement a software tool which converts GPS location data from csv format

into a valid JavaScript object.

The input to the program is a text stream which consists of lines, and each line contains 3 values

separated by commas (csv format - comma-separated):

The output is the same data represented as a JavaScript object (JSON format):

Your program should read the lines from standard input, extract three values from each line using

fscanf and write the same data in JSON format to standard output using fprintf.

You should write your program for Part 2 in a single text file called csv2js.c. Then you need to compile

your program using -Wall flag and C99 standard into an executable called csv2js.

First, test your program by entering data from the default standard input - the keyboard, and printing

the results to the default standard output - the screen.

If you wrote the program correctly, you should be able to set standard input to the input file

testinput1.csv and redirect standard output to file data.js.

2.1. Test case 1
Testing that your program generates the correct output format.

Figure 1. Sample input format

Figure 2. Sample output format

Using testinput1.csv as an input, generate output file data.js, and put it in the same folder where

map.html file is located. Then open map.html in a modern browser. You should be able to see all the

map markers that correspond to locations specified in testinput1.csv.

2.2. Test case 2
Testing your program with a corrupt input.

The test file testinput2.csv contains some invalid GPS coordinates. Modify your program so it checks that

the values of latitude and longitude are within valid intervals. Your program should send an error to the

standard error stream, and ignore the line with invalid GPS coordinates.

Run your program using testinput2.csv as an input and redirect the result to data.js. Now test that you

see the error messages on the screen, and you can open map.html and see all the valid locations on the

map.

2.3. Test case 3
The third test file testinput3.csv contains a header. Without modifying your C program, create a one-line

script test3 which will produce a valid output from testinput3.csv. Hint: use tail utility with the

corresponding options before redirecting the content of the input file to your program: see

https://en.wikipedia.org/wiki/Tail_(Unix)

2.4. Test case 4
Write a short shell script which uses your csv2js tool and takes all 3 input files testinput1.csv,

testinput2.csv, and testinput3.csv, and produces a single output file data.js. Hint: you can concatenate

the contents of your files, remove headers where needed, and then pass the concatenated stream as an

input to your tool.

Part 3. My second tool
Your friend created a map app which displays all coffee shops on campus. She found a list of all

Starbucks locations in the world and the list of all Tim Hortons locations in the world (mainly in Canada).

These files are provided in your A1_files directory. Both starbucks.csv and tims.csv contain headers. She

asks if you could help her to convert the original csv format into a JavaScript object compatible with the

Google map API.

Yes, of course, you have a tool for that!

However, your friend asks you that you limit the output to the locations delimited by the UofT

downtown campus - roughly defined as a rectangle presented below (boundaries included):

Without changing your csv2js code, accomplish this task by writing an additional small tool campus

which will process the data in two input csv files and retain only campus locations. Write your source

code in file campus.c, and compile it as before with -Wall flag and using C99 standard into executable

named campus.

https://en.wikipedia.org/wiki/Tail_(Unix)

Now connect both tools using pipe to obtain a final output in file data.js Test your final results with

campuscoffee.html.

What to submit:
Check into your svn repository 2 source code files: csv2js.c and campus.c. Make sure that the files are

named properly, all with lowercase letters. Submit your shell scripts for Part 2.3 and 2.4. in files test3

and test4. DO NOT submit inputs, outputs and html files.

Marking scheme:
10% - csv2js.c compiles without warnings

15% - test case 1 handled correctly

15% - test case 2 handled correctly

10% - script test3 runs and produces the correct output

10% - script test4 runs and produces the correct output

10% - campus.c compiles without warnings

10% - campus produces the correct output (in csv format)

20% - campus can be connected with csv2js using pipes and the final campus coffee map app works

correctly

For a total of 5 points of the course grade.

Note: If your code does not compile on CDF, you will get a zero for this assignment.

Figure 3. Definition of campus area

